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Abstract: (Net) load forecasts for five feeders have been produced and validated 
for 15 min to 5 days forecast horizon. Forecasting methods like Artificial Neural 
Networks optimized using Genetic Algorithms, Support Vector Regression, k-
Nearest Neighbors, and various other state-space and time-series models were 
implemented and tested successfully. The forecasting errors were found to 
increase on cloudy days and to increase on feeders with higher solar penetration. 
Exogenous inputs like day-ahead solar forecasts from the NAM model were also 
used as an input to further refine the forecast. The accuracy of the load forecast 
is limited by the NAM forecast accuracy. 

 
 
 
 
 
 
 
 
 
 
 

 



Subtask 5.2 Substation Net Load Operational Forecasts for Fast Demand Response 
Implementation 
 
Background and Motivation 
Variable rooftop solar generation contributes substantially to the power demand forecast 
uncertainty at substation level. The impacts of high penetration PV on distribution circuit loads 
such as peak demand, dynamic loading, and fast demand response capability were quantified. 
High-fidelity intra-hour (5, 10, 15, 30 and 60 minutes) and multiple days-ahead (1-5 days ahead) 
power demand forecasts methodologies for five feeders were implemented and validated.  
 
Data and Forecast implementation 
 
Intra-hour and day-ahead forecasts with a forecast horizon of 15 min up to 5 days-ahead were 
implemented for five feeders with high solar penetration i.e. Valley Center, Avocado, Creelman, 
Cabrillo and Alpine located in the San Diego Gas & Electric (SDG&E) operating region. The 
details about the five feeders are shown in Table 1. The impact of solar penetration on the load 
profile for the feeder with the highest solar penetration is shown Fig. 1. The variability in solar 
power production propagates into the load profile, which makes load forecasting more 
challenging during the daytime. Similar characteristics were observed in other feeder’s load 
profile with decreasing effect of solar variability on feeder load demand with decreasing solar 
penetration. Solar penetration is defined as the percentage of total solar power produced w.r.t.  
total load on the feeder i.e., the sum of solar energy produced and net load annually. 
 
Table 1: Details about five SDG&E feeders for which net load forecasting was implemented and 
tested.  
 

 

SDGE feeders 

Feeder 
length [km] 

No. of 
customers 

No. of PV 
systems 

Solar 
penetration 

Valley Center 51.5 471 19 23.8% 

Avocado 177.8 2246 29 13.3% 

Creelman 115.7 1169 43 9.26% 

Cabrillo 39.6 3761 91 5.79% 

Alpine 34.5 1466 28 2.39% 

 
 



 
 

Figure 1: Sample satellite image and load profile for 21 March 2013 for a highly cloudy day. The 
red circle in the satellite image shows the feeder location. The effect of solar penetration on the 
load profile manifests in the load fluctuations during daytime [7:00 – 18:00 PDT]. 
 
 
 
For developing and testing the models, the dataset was divided into two disjoint datasets: the 
training set consists of data between January 2011 to June 2012 and the validation/testing set 
ranges from July 2012 to June 2013. For intra-hour forecasts, the methods with non-exogenous 
inputs were implemented, whereas for multiple day ahead forecast, day- ahead solar irradiance 
forecasts provided by the NOAA North American Model (NAM) were also used as inputs.  
 
The forecast models with non-exogenous input were developed as 𝑦̀(𝑡 + 𝑘|𝑡) =  𝑓 (𝑦(𝑡), 𝑦(𝑡 −
1), 𝑦(𝑡 − 2) … 𝑦 (𝑡 − 𝑛𝑘)), where ‘𝑦’ is the net load, ‘𝑦́’ is the net load forecast issued at time ‘𝑡’ for 

‘𝑘’ steps ahead (forecast horizon) using a non-linear/linear function, ‘ 𝑓 ‘ with ‘𝑛𝑘’ as the number 
of time-lagged inputs. If no information about the underlying processes affecting the system is 
available, machine-learning tools like Artificial Neural Networks (ANN) and Support Vector 
Regression (SVR) have proven to be useful for input/output mapping.  ANNs consist of multiple 
layers with processing units called neurons. Neurons take in weighted sum of inputs through 
various layers and produce an output using an activation function. For this study, the optimal 
structure of the ANN was obtained by using a Genetic Algorithm (GA). GA is an optimization 
algorithm based on survival of the fitted individuals [1]. Secondly, a non-linear regression 
technique known as Support Vector Regression (SVR) was applied [2]. The inputs used are 
known as support vectors and the function ‘  𝑓  ‘is defined as 𝑓(𝑦) = < 𝑤, 𝑦 > +𝑏 , where 𝑤 

represents the weights and 𝑏 is a constant. The optimization problem is solved with the following 
objective and constraints, 

min
𝑤,𝑏,𝜉,𝜉∗

1

2
𝑤′𝑤 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)
𝑙

𝑖=1
 

 
subject to 𝑦𝑖 − (𝑤′𝑓(𝑦) + 𝑏) ≤ 𝜖 + 𝜉𝑖 , 

(𝑤′𝑓(𝑦) + 𝑏) − 𝑦𝑖 ≤ 𝜖 + 𝜉𝑖
∗, 

      𝜉𝑖 , 𝜉𝑖
∗ ≥ 0, 𝑖 = 1, … , 𝑙, 

 

where, 𝑦𝑖 ∈ {𝑦(𝑡), 𝑦(𝑡 − 1) … 𝑦(𝑡 − 𝑛𝑘)} is the input; 𝜉𝑖 , 𝜉𝑖
∗ are the upper and lower training errors 

subject to an 𝜖-insensitive tube and 𝐶 is the cost of the error . Therefore, the parameters 𝐶, 𝜖 and 

the mapping function 𝑓 control the regression quality obtained using SVR. A radial basis function 
was used as a mapping function while cross-validation was used to compute the other 
parameters [3]. Moreover, pattern recognition-based machine learning techniques i.e., k-Nearest 
Neighbors (kNN) were also implemented for day ahead load forecasting. This technique identifies 
similar patterns in the historical dataset w.r.t. the present conditions and chooses the closest 
neighbors. For this study 15 best neighbors were chosen. The corresponding outputs of the best 
neighbors are combined to issue a forecast [4].  Finally, NAM weather forecasts are used as an 
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input to day-ahead forecasts by utilizing an ensemble re-forecast method [5]. The ensemble re-
forecast method is a combination of various linear and non-linear time-series regression 
techniques like autoregressive model with exogenous input (ARX), non-linear autoregressive 
model with exogenous input (NARX), Box-Jenkins model (BJ), etc.  
 
 
Error Metrics 
In this work we used the following error metrics: Mean Absolute Percentage Error (MAPE), Root 
Mean Square Error (RMSE), and Coefficient of Determination (R2). The MAPE measures the 

accuracy of a method in terms of percentage error. It is defined as MAPE [%] = 
100

𝑛
∑ |

𝐴𝑡−𝐹𝑡

𝐴𝑡
|𝑛

𝑡=1 , 

where 𝐴𝑡 is the actual value and 𝐹𝑡 is the forecast value of the net load at time 𝑡. RMSE gives the 
information about the spread i.e., standard deviation in the error. A MAPE or RMSE of zero imply 
perfect forecasts. The coefficient of determination R2 measures the level of dispersion about the 
1:1 line in a scatter plot of measured vs. forecasted values.  
 
Results and discussions 
Intra-hour forecasts 
 
Machine learning based forecasting models were developed for intra-hour forecasting for 15 min, 
and 30 min forecast horizon with 15 min averaged time-series as provided by SDG&E. Since the 
load profile is inherently different during daytime compared to night time due to variability 
introduced by solar energy, two local SVR models for each feeder were developed: one for day 
time and another one for night time.  
 
Comparing the results using SVR and ANN from Table 2 and Table 3, it can be observed that the 
performance of both methods is similar for the 15 min forecast horizon. ANN-GA outperforms 
SVR for 30 min forecast horizon in terms MAPE. The sample results using local SVR are shown 
in Figure 2 for the Valley Center feeder to compare the accuracy of the forecasting model for 
clear and cloudy conditions. Most of the error occurs during the daytime especially during cloudy 
days. The impact of intermittency in solar power can be observed in net load, which are 
challenging to forecast resulting in high magnitude forecast errors.  Also, despite the fact that 
Creelman and Alpine have lower solar penetration as compared to Valley Center and Avocado, 
they still have high forecasting error.  These high magnitude errors for Creelman and Alpine can 
be attributed to the high variability in load from these feeders independent of solar generation 
(see Figure 3). Next, the intra-hour SVR forecast models were extended for multiple day(s) ahead 
forecasting. 
 
 
Table 2: Net load forecasting results for 15 min forecast horizon for the five feeders. 

Models SVR GA/ANN 

Feeder-  
Solar Penetration  

MAPE [%], RMSE [MW], R2 MAPE [%], RMSE [MW], R2 

Valley center – 23.8% 5.06   0.10   0.96 5.24   0.10   0.96 

Avocado – 13.3% 2.54   0.19   0.97 2.83   0.17   0.97 

Creelman – 9.2% 2.39   0.05   0.95 3.34   0.05   0.95 

Cabrillo – 5.8% 2.24   0.11   0.98 1.92   0.09   0.99 

Alpine – 2.4% 2.40   0.07   0.98 2.76   0.06   0.99 

 



 
 

 

Figure 2: Load forecast results for the Valley Center feeder for 15 min forecast horizon using 
SVR. The first two days are clear days whereas the next two days depict cloudy days. The 
absolute error increases for cloudy days especially during solar production time. The above 
results are in PDT time. The vertical dashed lines indicate midnight. 

 
Figure 3: Load profile for the Creelman feeder for 04-14-2013 to 04-28-2013. It can be seen that 
the load profile for this feeder has high variability with sudden increase in load demand with no 
correlation to the past values. These spikes in load demand makes load forecasting very 
challenging with no information available about the sudden increase. 
 
Furthermore, to analyze if forecasts can be refined further by learning from the past errors, 
autocorrelation between the forecast residuals was analyzed. Figure 7 shows the autocorrelation 
in the load forecasting errors for the 15 min forecast horizon. The autocorrelation is almost white 



i.e., after 0 lag the errors are independent of each-other. It suggests that the model has captured 
all the information available in time-series and no information is left in the forecast residuals that 
could be leveraged to improve the forecast. Thus, this is the best forecast, which can be 
produced using such machine learning models with no exogenous input.  

Figure 7: The autocorrelation for the residuals of the forecast for 15 min forecast horizon is almost 
white which validates the model identification and indicates all the information from the time-
series has been captured by the model. 
 
 
Solar variability and solar penetration  
Next, the impact of solar variability and the level of solar penetration on intra-hour load forecast 
capabilities was studied using the synthetic high-resolution satellite-derived solar data 𝐺𝐻𝐼 from 

Task 2. Ramps, 𝑅(𝑡) at time (𝑡) for 30 min time-scale were defined as: 𝑅(𝑡) =  𝐺𝐻𝐼(𝑡) − 𝐺𝐻𝐼 (𝑡 −
1). Since the resolution for satellite-derived data was 30 min, separate forecasts were produced 
for the 30 min forecast horizon for 30 min averaged load time-series. Hence, the MAPE for these 
forecasts is lower than the forecast issued at 30 min forecast horizon for 15 min time-averaged 
values as many ramps at 15 min timescale average out at 30 min time-scale. It was observed that 
the load forecast error is independent of solar variability for feeders with low solar penetration. As 
solar penetration increases, the load forecast error increases and is a linear function of solar 
variability. As shown in Figure 8, the error increases linearly with increasing solar variability for 
the Valley Center feeder load which has highest solar penetration. In contrast to that, the error for 
Alpine (the feeder with lowest solar penetration) is uniform and stays the same irrespective of the 
solar variability. 
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Figure 8: Normalized absolute forecast error for the 30 min forecast horizon using SVR versus 
solar variability for the five feeders. 𝐴𝑡 is the actual value of the load, 𝐹𝑡 is the forecast value for 

time 𝑡 and ∆ represents the change in Global Horizontal Irradiance at every 30 min time step. The 
error is independent of the solar variability for feeders with lowest penetration (e.g. Alpine). With 
increasing solar penetration, the load forecast error increases and appears to be a linear function 
of solar variability. 
 
 
Days-ahead forecasts 
 
Intra-day forecasts were implemented for 1 – 5 day ahead forecast horizon with hourly resolution. 
The MAPE for each feeder for all the forecast horizons is shown in Figure 4. Detailed error 
statistics are provided in appendix (Table 4-Table 8). These forecasts are based on SVR and 
kNN model. The input vectors are the lagged values for the same hour from the past seven days. 
As shown in Figure 4, the MAPE for all feeders increases with increasing forecast horizon, 
eventually approaching a constant value for instance after the 4 days forecast horizon, the MAPE 
stays constant. Since the forecast for more than four days-ahead is giving information just about 
the shape of load profile like a polynomial fit, the error remains constant. Contrary to the expected 
result that the feeder with the highest penetration would contain the highest MAPE, the Creelman 
feeder has the highest MAPE irrespective of the forecast horizon. This can be again attributed to 
its load profile as discussed above and shown in Figure 3. 
 



 
 
Figure 4: Mean Absolute Percentage Error for all the feeders using SVR. 
 
 
 

 
Figure 5: Load forecast results for the Valley Center feeder for the 24h forecast horizon (top) and 
Absolute Error (AE) at the same times (bottom) for the year 2013 using SVR. The AE increases 
during daytime due to varying solar generation. The timestamps are in PDT. 
 
 
The above results were obtained without exogenous input. This demonstrates the challenging 
time-series characteristics for the day-ahead forecast horizon, in part due to ramps introduced by 
varying solar power generation. Sample intra-day forecasts are shown in Figure 5.  To correct for 
these errors, an ensemble re-forecast method [5] was applied using day-ahead Global Horizontal 
Irradiance (GHI) predictions obtained from a Numerical Weather Prediction model. National 
Oceanic and Atmospheric Administration NAM forecasts were available only for the day-ahead 



(36 hour) forecast horizon. Due to data availability, the NAM forecasts were utilized to enhance 
the results for the day-ahead forecast horizon only.  
 

 
Figure 6: Time synchronized NWP GHI and feeder load from Valley Center for 02-15-2013 to 02-
23-2013 PDT. The NWP model is able to predict the overcast day correctly. No ramps or 
variability in solar irradiance were predicted for partly cloudy conditions on the other days.  
 
The improvement achieved using ensemble re-forecast methods was marginal. It was found that 
improvements in the forecast are limited by the accuracy of the solar forecasts. Figure 6 shows 
time synchronized feeder load data and the GHI forecasts issued at 00 UTC for the next day. It 
can be seen that for the same GHI forecast, the feeder has variable load profile with different 
ramps (02-20-2013 and 02-22-2013), which were likely caused by solar variability. Thus, even 
after using the NWP forecasts as input, it is very challenging to forecast the daytime ramps in the 
net load. For now, effects introduced by the spatial extend of the area covered by the feeder were 
assumed to be negligible. Therefore, the point forecasts for the feeder location were used in the 
model, which seems to be insufficient to capture the spatial variability in the net load. In future 
studies, the NWP forecasts for the locations with solar generation weighted based on the power 
capacity of the solar plants is recommended to be added as an input for the net load forecasting 
models. 
 
 
 
Conclusions 
 
Net-load forecast for intra-hour and multiple day-ahead forecasts were successfully implemented 
for the five feeders in SDG&E operating region. For the 15 min forecast horizon, both SVR and 
ANN-GA forecast models are recommended whereas for 30 min forecast horizon ANN-GA based 
models outperformed the SVR models with a MAPE error ranging from 7.07% for the feeder with 
highest penetration (Valley Center) to 3.78% for the feeder with lowest penetration (Alpine) 
except for Creelman feeder. Intra-hour forecast error for the 30 min forecast horizon increases 
linearly as a function of solar variability for high (>5%) solar penetration feeders. Furthermore, 
NWP day-ahead GHI forecasts were added as an exogenous variable, but the net load forecast 
improvements were marginal. Since NWP day-ahead forecasts in coastal California are generally 
inaccurate and most net load forecast error was driven by short-term solar variability that was 
unresolved in the NWP. Therefore, it is suggested to use forecasts from all the location with solar 
generation as an input and ensemble them based on the capacity of the solar generation plant.  
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Appendix 
Table 3: Net load forecasting results for 30 min forecast horizon for the five feeders. 

Models SVR GA/ANN 

Feeders-  
Solar Penetration  

MAPE [%], RMSE [MW], R2 MAPE [%], RMSE [MW], R2 

Valley center – 23.8% 8.45    0.14      0.93  7.07   0.12   0.95 

Avocado – 13.3% 4.63    0.24     0.94 3.94   0.21   0.96 

Creelman – 9.2% 4.63    0.07    0.88 6.34   0.07   0.88 

Cabrillo – 5.8% 3.23    0.16    0.97 2.40   0.12   0.98 

Alpine – 2.4% 4.83    0.09    0.97 3.78   0.07   0.98 

 
Table 4: Net load forecasting results for 1 day forecast horizon for the five feeders. 

Models SVR kNN 

Feeders- Solar 
Penetration 

MAPE [%], RMSE [MW], R2 MAPE [%], RMSE [MW], R2 

Valley center – 23.8% 13.06    0.22   0.81  14.49   0.22    0.82 

Avocado – 13.3% 10.60    0.39    0.71  11.08   0.56    0.70 

Creelman – 9.2% 15.10    0.13    0.57  17.23   0.13    0.53 

Cabrillo – 5.8%  4.41    0.26    0.91   4.60    0.25    0.93 

Alpine – 2.4%  7.90    0.19   0.87   9.06    0.21    0.83 

 
 
Table 5: Net load forecasting results for 2 days forecast horizon for the five feeders using SVR. 

Feeders- Solar Penetration  MAPE [%], RMSE [MW], R2 

Valley center – 23.8% 16.07   0.28    0.72 



Avocado – 13.3% 12.41    0.64    0.60 

Creelman – 9.2% 18.59    0.16    0.36 

Cabrillo – 5.8%  5.29     0.29    0.90 

Alpine – 2.4% 10.97    0.27    0.72 

 

Table 6: Net load forecasting results for 3 days forecast horizon for the five feeders using SVR. 

Feeders- Solar Penetration  MAPE [%], RMSE [MW], R2 

Valley center – 23.8% 16.84   0.31    0.64 

Avocado – 13.3% 13.43   0.69    0.54 

Creelman – 9.2% 20.05    0.17    0.27 

Cabrillo – 5.8% 5.76      0.31    0.88 

Alpine – 2.4% 12.49    0.32    0.62 

 
 
Table 7: Net load forecasting results for 4 days forecast horizon for the five feeders using SVR. 

Feeders- Solar Penetration MAPE [%], RMSE [MW], R2 

Valley center – 23.8% 16.82    0.32    0.62 

Avocado – 13.3% 13.94    0.71    0.52 

Creelman – 9.2% 20.59    0.17    0.22 

Cabrillo – 5.8%  6.01    0.32    0.87 

Alpine – 2.4% 13.25   0.34    0.57 

 

Table 8: Net load forecasting results for 5 days forecast horizon for the five feeders using SVR. 

Feeders- Solar Penetration  MAPE [%], RMSE [MW], R2 

Valley center – 23.8% 17.18    0.33    0.60 

Avocado – 13.3% 14.19    0.71    0.51 

Creelman – 9.2% 20.60    0.17    0.22 

Cabrillo – 5.8%  6.12    0.33    0.87 

Alpine – 2.4% 13.73   0.35    0.54 

 
 


